合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國(guó)保潔 |
美國(guó)強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> α-環(huán)糊精對(duì)非離子表面活性劑和兩性離子表面活性劑混合體系的界面及自組裝性質(zhì)——結(jié)果和討論
> 表面張力儀的優(yōu)點(diǎn)與參數(shù)
> 水和乙二醇-水混合體系中的離子液體-陽離子表面活性劑混合膠束自聚焦-電導(dǎo)法 表面張立法和光譜研究法—
> 植物油中N-?;被岜砻婊钚詣┑慕缑婊钚院途奂袨椤牧虾头椒?/a>
> 高分子表面活性劑膠團(tuán)特點(diǎn)和影響因素
> 什么是高分散活性氧化鋅?
> 通過柔性葉片流涂膜的超支化聚合物結(jié)構(gòu)——實(shí)驗(yàn)制作
> 以豆蔻酸與氫氧化膽堿的配比控制泡沫的穩(wěn)定性-IF=4.2-表面活性劑乳化氣泡性能研究【下】
> 特殊潤(rùn)濕功能表面的理論、構(gòu)筑與應(yīng)用
> 界面張力儀幾種常見的試驗(yàn)不正?,F(xiàn)象
推薦新聞Info
-
> 牡蠣低分子肽LOPs雙重乳液制備、界面性質(zhì)檢測(cè)及消化吸收特性研究(三)
> 牡蠣低分子肽LOPs雙重乳液制備、界面性質(zhì)檢測(cè)及消化吸收特性研究(二)
> 牡蠣低分子肽LOPs雙重乳液制備、界面性質(zhì)檢測(cè)及消化吸收特性研究(一)
> 不同水解時(shí)間的Protamex酶對(duì)玉米谷蛋白表面張力、泡沫、理化性質(zhì)等的影響(三)
> 不同水解時(shí)間的Protamex酶對(duì)玉米谷蛋白表面張力、泡沫、理化性質(zhì)等的影響(二)
> 不同水解時(shí)間的Protamex酶對(duì)玉米谷蛋白表面張力、泡沫、理化性質(zhì)等的影響(一)
> 新型納米材料2-D納米黑卡在油水界面的微觀驅(qū)油機(jī)理、界面張力測(cè)定(三)
> 新型納米材料2-D納米黑卡在油水界面的微觀驅(qū)油機(jī)理、界面張力測(cè)定(二)
> 新型納米材料2-D納米黑卡在油水界面的微觀驅(qū)油機(jī)理、界面張力測(cè)定(一)
> 燒結(jié)礦致密化行為研究:不同堿度條件下熔體的表面張力、表觀黏度值(三)
葡萄酒的表面張力與酒本身的成分之間的相關(guān)性論文——結(jié)論、致謝!
來源:Unisense 瀏覽 1548 次 發(fā)布時(shí)間:2021-09-15
結(jié)論
葡萄酒無疑是一個(gè)非常復(fù)雜的分析矩陣。 其化學(xué)和儀器分析通常需要對(duì)樣品進(jìn)行預(yù)處理,以消除那些會(huì)干擾分析的化合物。 這種額外的程序既費(fèi)時(shí)又費(fèi)錢。 我們已經(jīng)通過統(tǒng)計(jì)分析表明,一些最重要的釀酒參數(shù)與表面張力顯著相關(guān)。 乙醇濃度已被證明是其中最好的負(fù)相關(guān)參數(shù)。 從 20 個(gè)葡萄酒樣品的分析中獲得的線性預(yù)測(cè)模型非常有效,因?yàn)樗梢越忉尭哌_(dá)近 91% 的乙醇含量變化。 通過包括 30 個(gè)以上的樣本來擴(kuò)展模型產(chǎn)生了令人滿意的結(jié)果。 提議的線性模型解釋了 81% 的乙醇含量變化,估計(jì)的標(biāo)準(zhǔn)誤差為 0.36% (v/v),為釀酒師進(jìn)行常規(guī)分析提供了一個(gè)有趣的工具。 必須進(jìn)行更深入的研究,以便為蛋白質(zhì)和單寧等化合物建立可靠的類似預(yù)測(cè)模型,否則需要費(fèi)力的方法來確定它們。
致謝
我們感謝 AMPELOOINIKI Ltd. 提供葡萄酒樣品及其對(duì)設(shè)備和試劑的重大貢獻(xiàn)。
參考
Andre′ s-Lacueva, C., Lo′ pez-Tamames, E., Lamuela-Ravento′ s, R.M., Buxaderas, S., de la Torre-Boronat, M.C., 1996a. Characteristics of sparkling base wines affecting foam behaviour. Journal of Agricultural and Food Chemistry 44, 989–995.
Andre′ s-Lacueva, C., Gallart, M., Lo′ pez-Tamames, E., Lamuela-Ravento′ s, R.M., 1996b. Influence of variety and aging on foaming properties of sparklingwine (cava). 1. Journal of Agricultural and Food Chemistry 44, 3826–3829.
Andre′ s-Lacueva, C., Lamuela-Ravento′ s, R.M., Buxaderas, S., de la Torre-Boronat, M.C., 1997. Influence of variety and aging on foaming properties of cava (sparkling wine). 2. Journal of Agricultural and Food Chemistry 45, 2520–2525. Bertrand, A., 1968. Utilisation de la chromatographie en phase gaseuse pour le dosage des constituents volatils des vins. The` se Docteur en Chimie, Universite′ de Bordeaux II, France.
Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248–254.
Brissonnet, F., Maujean, A., 1991. Identification of some foam-active compounds in champagne base wines. American Journal of Enology and Viticulture 42, 97– 102.
Brissonnet, F., Maujean, A., 1993. Characterization of foaming proteins in a champagne base wine. American Journal of Enology and Viticulture 44, 297–301.
Crespy, A., 2006. Les tanins de raisin: une opportunite′ pour les vins me′ diterrane′ ens. Revue des Oenologues et des Techniques Vitivinicoles et ¨nologiques 119, 23– 25.
Douglas, H.W., 1950. A pendent-drop apparatus for surface and interfacial tensions. Journal of Scientific Instruments 27, 67–69.
Esteruelas, M., Poinsaut, P., Sieczkowski, N., Manteau, S., Fort, M.F., Canals, J.M., Zamora, F., 2009. Characterization of natural haze protein in sauvignon white wine. Food Chemistry 113, 28–35.
Ferreira, R.B., Pic?arra-Pereira, M.A., Monteiro, S., Loureiro, V.B., Teixeira, A.R., 2002. The wine proteins. Trends in Food Science and Technology 12, 230–239.
Foster, J.F., 1960. The Plasma Proteins. Academic Press, New York. Frazier, R.A., Papadopoulou, A., Mueller-Harvey, I., Kissoon, D., Green, R.J., 2003.
Probing protein–tannin interactions by isothermal titration microcalorimetry. Journal of Agricultural and Food Chemistry 51, 5189–5195.
Gallart, M., Lo′ pez-Tamames, E., Buxaderas, S., 1997. Foam measurements in wines: comparison of parameters obtained by the gas sparging method. Journal of Agricultural and Food Chemistry 45, 4687–4690.
Gaonkar, A.G., Neuman, R.D., 1987. The uncertainty in absolute values of surface tension of water. Colloids and Surfaces 27, 1–14.
Gkoulioti, A., 2000. Identification and determination of the volatile compounds of the grape variety Xinomavro cultivated in the zone of Naoussa. PhD Thesis, Aristotle University of Thessaloniki, Thessaloniki, Greece.
Glories, Y., 1978. Recherches sur la matie` re colorante des vins rouges. The` se Doctorat d' Etat es Sciences, Univ. Bordeaux II, France.
IAPWS, September 1994. Release on Surface tension of Ordinary Water Substance. , pp. 1–4http://www.iapws.org/relguide/surf.pdf.
Janczuk, B., Chibowski, E., Wojcik, W., 1985. The influence of n-alcohols on the wettability of hydrophobic solids. Powder Technology 45, 1–6.
Jin, H., Uhuan, H., Suohe, Y., 2009. Gas-liquid flow characterization in bubble columns with various gas-liquid using electrical resistance tomography. Journal of Physics: Conference Series 147, 012032., http://iopscience.iop.org/1742- 6596/147/1/012032.
Liger-Belair, G., 2005. The physics and chemistry behind the bubbling properties of Champagne and sparkling wines: a state-of-the-art review. Journal of Agricultural and Food Chemistry 53, 2788–2802.
Moreno-Arribas, V., Pueyo, E., Nieto, F.J., Mart?′n-Alvarez, P.J., Polo, M.C., 2000. Influence of the polysaccharides and the nitrogen compounds on foaming properties of sparkling wines. Food Chemistry 70, 309–317.
Moreno-Arribas, M.V., Pueyo, E., Polo, M.C., 2002. Analytical methods for the characterization of proteins and peptides in wines. Analytica Chimica Acta 458, 63–75.
Myers, D., 1988. Surfactant Science and Technology. VCH Publications. OIV, 1990. Recueil des me′thodes internationales d'analyse des vins et des mou? ts, Paris.
Pe′ ron, N., Cagna, A., Valade, M.,Marchal, R., Maujean, A., Robillard, B., Aguie′-Be′ ghin, V., Douillard, R., 2000. Characterization by drop tensiometry and by ellipsometry of the adsorption layer formed at the air/champagne wine interface. Advances in Colloid and Interface Science 88, 19–36.
Peynaud, E., 1984. Knowing and Making Wine. John Wiley & Sons. Poncet-Legrand, C., Cartalade, D., Putaux, J.-L., Cheynier, V., Vernhet, A., 2003.
Flavan-3-ol aggregation in model ethanolic solutions: incidence of polyphenol structure, concentration, ethanol content and ionic strength. Langmuir 19, 10563–10572.
Pueyo, E., Mart?′n-Alvarez, P.J., Polo, M.C., 1995. Relationship between foam characteristics and chemical composition in wines and cavas (sparkling wines). American Journal of Enology and Viticulture 46 (4), 518–524.
Razafindralambo, H., Paquot, M., Baniel, A., Popineau, Y., Hbid, C., Jacques, P., Thonart, P., 1996. Foaming properties of surfactin, a lipopeptide biosurfactant from Bacillus subtilis. Journal of the American Oil Chemists Society 73 (1), 149– 151.
Ribe′reau-Gayon, P., Glories, Y., Maujean, A., Dubourdieu, D., 2000. The Chemistry of Wine Stabilisation and Treatments. Handbook of Enology, vol. 2. J. Wiley & Sons, England.
Rocchia, M., Ellena, M., Zeppa, G., 2007a. Determination of ethyl alcohol content in red wines with an optical alcohol meter based on nanostructured silicon. Journal of Agricultural and Food Chemistry 55 (15), 5984–5989.
Rocchia, M., Rossi, A.M., Zeppa, G., 2007b. Determination of ethanol content in wine through a porous silicon oxide microcavity. Sensors and Actuators B 123, 89–93.
Segarra, I., Lao, C., Lo′ pez-Tamames, E., de la Torre-Boronat, M.C., 1995. Spectrophotometric methods for the analysis of polysaccharide levels in winemaking products. American Journal of Enology and Viticulture 46 (4), 564–570.
Smith, G.W., Sorg, L.V., 1941. The measurement of boundary tension by the pendant-drop method. I. The aliphatic alcohols. The Journal of Physical Chemistry 45 (4), 671–681.
Somers, T.C., 1975. In search of quality for red wines. Food Technology in Australia 27, 4946.
Sudraud, P., 1958. Interpretation des courbes d'adsorption des vins rouges. Annales de Technologie Agricole 1, 209–216.
Theodoridis, A., 1997. Comparative Study of Methods of K+, Na+, Ca2 +, Mg2 +, NH4 +, Cl and SO4 2 Determination in Wines by Ion Chromatography, Atomic Absorption Spectrometry and Potentiometry. MSc, Aristotle University of Thessaloniki, Thessaloniki, Greece. Tusseau, D., Benoit, C., 1987. Routine high-performance liquid chromatography determination of carboxylic acids in wine and champagne. Journal of Chromatography 395, 323–333.
Van De Casteele, K., Geiger, H., De Loose, R., Van Sumere, C.F., 1983. Separation of some anthocyanins, proanthocyanidins and related substances by reversedphase high performance liquid chromatography. Journal of Chromatography 259, 291–300.
Va′ zquez, G., Alvarez, E., Navaza, J.M., 1995. Surface tension of alcohol + water from 20 to 50 8C. Journal of Chemical and Engineering Data 40 (3), 611–614.
Viljanen, K., Kylli, P., Hubbermann, E.-M., Schwarz, K., Heinonen, M., 2005. Anthocyanin antioxidant activity and partition behavior in whey protein emulsion. Journal of Agricultural and Food Chemistry 53, 2022–2027.
Zoecklein, B.W., Fugelsang, K.C., Gump, B.H., Nury, F.S., 1995. Wine Analysis and Production. Chapman and Hall, New York.
葡萄酒的表面張力與酒本身的成分之間的相關(guān)性論文——摘要、簡(jiǎn)介
葡萄酒的表面張力與酒本身的成分之間的相關(guān)性論文——材料和方法