合作客戶/
拜耳公司 |
同濟大學 |
聯(lián)合大學 |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關新聞Info
-
> 低界面張力納米流體提高低滲透油藏壓裂滲吸速率和采收率(三)
> 利用LB膜分析儀技術制備納米環(huán)組裝陣列,得到一種具有結構色的材料
> 東辛原油酸性活性組分油水界面張力、動態(tài)界面擴張流變性質研究(二)
> 滴體積法分析TODGA/HNO3體系萃取La3+過程中界面張力變化影響因素(一)
> 研究發(fā)現(xiàn):水解聚丙烯酰胺HPAM降低油水界面張力能力極其有限(二)
> 5種聚萜烯馬來酸酐聚乙二醇酯高分子表面活性劑表面張力、乳化性能等研究(二)
> LB膜技術在界面相互作用研究中的應用
> 5μL樣品測表面張力?超微量天平如何破解納米材料研發(fā)困局
> 耐擦刮無膠消光膜制備方法、高表面張力與收解卷順暢性的平衡(一)
> 低張力氮氣泡沫體系的研制試驗油井組概況
推薦新聞Info
-
> 振蕩頻率、濃度、油相、界面張力對陰離子表面活性劑HABS和PS界面模量的影響(三)
> 振蕩頻率、濃度、油相、界面張力對陰離子表面活性劑HABS和PS界面模量的影響(二)
> 振蕩頻率、濃度、油相、界面張力對陰離子表面活性劑HABS和PS界面模量的影響(一)
> 3種助劑對螺蟲乙酯和聯(lián)苯菊酯藥液表面張力、金釵石斛菲盾蚧防治效果的影響(三)
> 3種助劑對螺蟲乙酯和聯(lián)苯菊酯藥液表面張力、金釵石斛菲盾蚧防治效果的影響(二)
> 3種助劑對螺蟲乙酯和聯(lián)苯菊酯藥液表面張力、金釵石斛菲盾蚧防治效果的影響(一)
> 利用LB膜分析儀技術制備納米環(huán)組裝陣列,得到一種具有結構色的材料
> 覆蓋有疏水網(wǎng)的開放管道液體輸運穩(wěn)定性研究(下)
> 覆蓋有疏水網(wǎng)的開放管道液體輸運穩(wěn)定性研究(上)
> 水、常溫液態(tài)金屬等9種流體對液滴碰撞壁面影響的數(shù)值研究(三)
雙內凹結構表面可實現(xiàn)對低表面張力液體的穩(wěn)固超排斥
來源:哈工大鄭州研究院 哈爾濱工業(yè)大學 瀏覽 1053 次 發(fā)布時間:2024-02-28
由于較低的表面張力,油滴很容易在固體表面鋪展?jié)櫇瘢瑥亩档驼麄€體系的界面自由能,因此,實現(xiàn)低表面扎張力的超排斥相對來說比較困難。為了實現(xiàn)低表面張力油的超排斥,目前有相關研究人員提出了雙內凹結構,通過雙內凹結構能夠有效鎖定固-液-氣三相接觸線,阻止液體沿著表面微結構向下滑移,從而將液體支撐在微結構空氣層上面而實現(xiàn)對不同液體的有效排斥。
但是,現(xiàn)有技術中制備得到的雙內凹結構尺寸均在幾十微米以上,雖然能夠實現(xiàn)低表面張力液體的超排斥,但這種排斥性極不穩(wěn)定,如空氣流動或者液滴自身運動都會導致液體塌陷并濕潤固體表面。
一種制備更小尺寸雙內凹結構的方法,提高對低表面張力液體的超排斥能力,提升穩(wěn)定性。
為解決上述問題,本發(fā)明提供一種微米雙內凹結構表面的制造方法,包括以下步驟:
步驟S1、在半導體材料的表面設置光刻膠層;其中,所述半導體材料包括上下設置的硅層和二氧化硅層,所述光刻膠層設置在所述二氧化硅層遠離所述硅層一側的表面上;
步驟S2、對所述光刻膠層進行第一刻蝕,使預設微圖案轉移至光刻膠層上,得到光刻膠掩模板;其中,所述預設微圖案為圓孔陣列結構,所述圓孔陣列結構中相鄰圓孔的間距相同;
步驟S3、根據(jù)所述光刻膠掩模板,對所述二氧化硅層進行第二刻蝕,在所述二氧化硅層上與所述預設微圖案對應位置形成第一圓柱孔陣列,所述第一圓柱孔陣列中包括多個周期性陣列的第一圓柱孔,得到第一刻蝕半導體材料;
步驟S4、在所述二氧化硅層中所述預設微圖案的對應區(qū)域,沿所述第一圓柱孔的軸向對所述硅層進行第三刻蝕,在所述硅層中形成與所述第一圓柱孔對應的第二圓柱孔,然后去除所述光刻膠掩膜板,得到第二刻蝕半導體材料;
步驟S5、在所述第二刻蝕半導體材料中具有所述二氧化硅層的一側沉積二氧化硅,形成沉積二氧化硅層,然后通過刻蝕去除位于所述第二圓柱孔底部的所述沉積二氧化硅層,得到第三刻蝕半導體材料;
步驟S6、采用深反應離子刻蝕機的Bosch工藝,對所述第二圓柱孔中的所述硅層進行各向異性刻蝕,得到第四刻蝕半導體材料;
步驟S7、繼續(xù)對所述第二圓柱孔中所述硅層進行各向同性刻蝕,在所述半導體材料上形成了微米雙內凹結構表面。
綜上所述,本發(fā)明實施例能夠在材料表面通過微加工的方式制備了特征尺寸在10微米以下的雙內凹結構表面,所制備表面具有較大的突破壓和界面穩(wěn)固因子,可實現(xiàn)對低表面張力液體的穩(wěn)固超排斥。