合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國(guó)保潔 |
美國(guó)強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> α-環(huán)糊精對(duì)非離子表面活性劑和兩性離子表面活性劑混合體系的界面及自組裝性質(zhì)——結(jié)果和討論
> 表面張力儀的優(yōu)點(diǎn)與參數(shù)
> 水和乙二醇-水混合體系中的離子液體-陽(yáng)離子表面活性劑混合膠束自聚焦-電導(dǎo)法 表面張立法和光譜研究法—
> 植物油中N-?;被岜砻婊钚詣┑慕缑婊钚院途奂袨椤牧虾头椒?/a>
> 高分子表面活性劑膠團(tuán)特點(diǎn)和影響因素
> 什么是高分散活性氧化鋅?
> 通過柔性葉片流涂膜的超支化聚合物結(jié)構(gòu)——實(shí)驗(yàn)制作
> 以豆蔻酸與氫氧化膽堿的配比控制泡沫的穩(wěn)定性-IF=4.2-表面活性劑乳化氣泡性能研究【下】
> 特殊潤(rùn)濕功能表面的理論、構(gòu)筑與應(yīng)用
> 界面張力儀幾種常見的試驗(yàn)不正?,F(xiàn)象
推薦新聞Info
-
> 牡蠣低分子肽LOPs雙重乳液制備、界面性質(zhì)檢測(cè)及消化吸收特性研究(三)
> 牡蠣低分子肽LOPs雙重乳液制備、界面性質(zhì)檢測(cè)及消化吸收特性研究(二)
> 牡蠣低分子肽LOPs雙重乳液制備、界面性質(zhì)檢測(cè)及消化吸收特性研究(一)
> 不同水解時(shí)間的Protamex酶對(duì)玉米谷蛋白表面張力、泡沫、理化性質(zhì)等的影響(三)
> 不同水解時(shí)間的Protamex酶對(duì)玉米谷蛋白表面張力、泡沫、理化性質(zhì)等的影響(二)
> 不同水解時(shí)間的Protamex酶對(duì)玉米谷蛋白表面張力、泡沫、理化性質(zhì)等的影響(一)
> 新型納米材料2-D納米黑卡在油水界面的微觀驅(qū)油機(jī)理、界面張力測(cè)定(三)
> 新型納米材料2-D納米黑卡在油水界面的微觀驅(qū)油機(jī)理、界面張力測(cè)定(二)
> 新型納米材料2-D納米黑卡在油水界面的微觀驅(qū)油機(jī)理、界面張力測(cè)定(一)
> 燒結(jié)礦致密化行為研究:不同堿度條件下熔體的表面張力、表觀黏度值(三)
十分自然的表面張力模擬效果:櫻桃落在水面是真實(shí)還是模擬的?
來源:機(jī)器之心 瀏覽 1661 次 發(fā)布時(shí)間:2021-07-19
作者:阮良旺
十分自然的表面張力模擬效果。
櫻桃落在水面,你能分辨出這張圖是真實(shí)還是模擬的嗎?
因?yàn)楸砻鎻埩Φ拇嬖?,落葉可浮于水面、水黽得以在水面爬行,這是十分自然的現(xiàn)象。
而計(jì)算機(jī)模擬表面張力,也可以達(dá)到十分真實(shí)的效果。
近日,在由北京大學(xué)陳寶權(quán)教授研究團(tuán)隊(duì)與北京電影學(xué)院未來影像高精尖創(chuàng)新中心、達(dá)特茅斯學(xué)院、德克薩斯農(nóng)工大學(xué)合作的論文《Solid-Fluid Interaction with Surface-Tension-Dominant Contact》中,作者們提出全新的模擬框架處理帶表面張力的流固強(qiáng)耦合,能夠精確模擬各種與表面張力相關(guān)的物理過程。
本文入選了SIGGRAPH 2021論文Trailer(精選預(yù)告片),并將在計(jì)算機(jī)動(dòng)漫節(jié)Computer Animation Festival(CAF)上播放,并在SIGGRAPH主頁(yè)推薦。
以下為論文一作、北大圖靈班學(xué)生阮良旺對(duì)此研究的解讀。
簡(jiǎn)介
樹葉落在水面上泛起陣陣漣漪,密度比水大的回形針卻能漂浮在水面上,這些現(xiàn)象的背后有一個(gè)共同原因——表面張力?,F(xiàn)有的物理模擬技術(shù)能夠單獨(dú)模擬流體和固體,但是想要在屏幕上重現(xiàn)表面張力的作用時(shí),我們需要搭建一個(gè)全新的模擬框架。在這篇文章中,我們使用顯式三角網(wǎng)格表示流體表面的薄層,并在薄層中建立表面張力模型,然后采用統(tǒng)一的模擬框架將流體、流體表面層和固體三者耦合起來,實(shí)現(xiàn)表面張力驅(qū)動(dòng)的流固耦合模擬。在這個(gè)框架下,我們可以模擬一些之前不能實(shí)現(xiàn)的表面張力效果:密度大于水的物體漂浮在水面上,水面上的物體相互吸引(甜麥圈效應(yīng)),以及表面張力不足以支撐物體后的水面破碎效果。
表面張力
表面張力原理圖,來自wikipedia
表面張力指的是流體表面會(huì)盡可能收縮的趨勢(shì)。微觀原理上是因?yàn)榱黧w表面的分子密度比流體內(nèi)部的分子密度更為稀疏,因而表面分子之間的平均距離更大,所以分子間的相互作用表現(xiàn)為一種吸引力。從宏觀上來講,我們可以定義一個(gè)表面張力勢(shì)能:
其中是流體表面的面積,稱為表面張力系數(shù)。當(dāng)流體與固體發(fā)生作用時(shí),流體表面的分子同時(shí)會(huì)受到固體分子的作用,從而將表面張力作用在固體上。固體根據(jù)表面特性不同可以分為親水和疏水兩類,疏水材質(zhì)在水面上會(huì)受到向上的表面張力作用,對(duì)于一些細(xì)小的結(jié)構(gòu)來說這個(gè)力要比浮力更為明顯。比如說水黽是一種可以生活在水面上的昆蟲,它的腳非常細(xì)長(zhǎng),并且有很多絨毛來保持疏水特性,因而水黽可以依靠表面張力維持自身的重量,并通過腳來劃動(dòng)水面來向前運(yùn)動(dòng)甚至跳起。
方法介紹
算法原理圖
我們的耦合系統(tǒng)分為三個(gè)部分:流體,表面層,固體。流體部分我們采用傳統(tǒng)的歐拉網(wǎng)格的模擬方法,在交錯(cuò)網(wǎng)格(Staggered Grid)上用算符分離的方法求解離散不可壓的Navier Stokes方程。固體部分采用傳統(tǒng)的拉格朗日方法求解牛頓方程。我們的主要貢獻(xiàn)在于在流體與固體之間插入了一層有質(zhì)量、有厚度的流體表面層,這個(gè)表面層直接對(duì)應(yīng)我們上面介紹的流體表面分子稀疏的部分。因?yàn)檫@個(gè)表面層非常薄,我們可以使用帶虛擬厚度的單層三角網(wǎng)格來表示,然后在這個(gè)表面層上施加表面張力勢(shì)能。為了將這三個(gè)部分耦合起來,我們?cè)诒砻鎸雍捅尘熬W(wǎng)格、固體和背景網(wǎng)格之間定義了速度的插值矩陣,同時(shí)將流體的壓強(qiáng)作用在表面層和固體上,以及將表面張力作用在固體上,這樣我們將這三部分寫進(jìn)一個(gè)三相耦合方程里進(jìn)行統(tǒng)一求解和更新。最終我們算法的流程如下:
算法流程圖
部分結(jié)果展示
這里我們展示我們論文的部分結(jié)果,更多結(jié)果請(qǐng)查看我們的視頻(點(diǎn)文末“閱讀原文”跳轉(zhuǎn))。在櫻桃、回形針、樹葉和小船這三個(gè)例子中,我們使用盡量與真實(shí)圖片相同的配置進(jìn)行模擬,都得到了與真實(shí)圖片相差無幾的結(jié)果,體現(xiàn)了我們算法的真實(shí)性。
例子1:櫻桃
真實(shí)圖片©ValeryOrlov
模擬結(jié)果:櫻桃和水/櫻桃和牛奶
在這個(gè)例子中我們展示了在其他條件都相同的情況下,我們僅僅改變了流體的表面張力系數(shù),櫻桃掉進(jìn)表面張力系數(shù)更大的水面上可以漂浮起來,但是在表面張力系數(shù)更小的牛奶里就會(huì)掉下去。
例子2:回形針
真實(shí)圖片©RobertD.Anderson
模擬結(jié)果:回形針
在這個(gè)例子中我們成功使密度大于水的回形針漂浮在水面上,水面下面的條狀背景會(huì)因?yàn)樗娴膹澢冃危瑥淖蟮接一匦吾樀拿芏戎饾u增大,中間條紋的密度也在逐漸增加。在最右邊的場(chǎng)景中,回形針的密度達(dá)到了7.9 g/cm^3(金屬鐵的密度),是水密度的將近8倍,但是依然可以依靠表面張力漂浮起來,得到的條紋分布與真實(shí)圖片最為接近。
例子3:樹葉和小船
真實(shí)圖片©Pictoscribe-/Flickr
模擬結(jié)果:小船和樹葉
在這個(gè)例子中我們展示了我們方法可以方便地處理薄殼剛體的情況,小船和樹葉都使用單層三角網(wǎng)格來表示。在樹葉的邊界上,我們?cè)俅蔚玫搅伺c真實(shí)圖片幾乎完全一致的結(jié)果。
模擬結(jié)果:水黽機(jī)器人
在這個(gè)例子中,我們?cè)O(shè)計(jì)了一個(gè)類似于水黽的水上機(jī)器人,它可以依賴自身的關(guān)節(jié)驅(qū)動(dòng)在水面上向前運(yùn)動(dòng)。