合作客戶/
拜耳公司 |
同濟大學 |
聯(lián)合大學 |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關新聞Info
-
> 基于超微量天平對沉積質(zhì)量的精確測量,制備納尺度的銅薄膜
> 助劑臨界膠束濃度對芒果細菌性角斑病防治藥劑表面張力的影響(二)
> 微膠囊聚合物溶液對延展型表面活性劑界面張力的影響(三)
> 煤油的界面張力多少合適,煤油表面張力與溫度對照表
> 溫度對甜菜堿短鏈氟碳表面活性劑表面張力、鋪展、發(fā)泡性能影響(四)
> 什么是超微量天平,超微量天平使用方法、最小稱量值
> 仲醇聚氧乙烯醚硫酸鹽平衡和動態(tài)表面張力及應用性能研究(二)
> 礦井瓦斯防治:表面活性劑溶液表面張力、泡沫特性及對甲烷緩釋效應(二)
> 氟硅表面活性劑(FSS)水溶液表面張力、發(fā)泡力、乳化力測定(三)
> 新型添加劑濃度對水合物溶液的表面張力的影響
推薦新聞Info
-
> 以大豆為原料合成的N-椰子油?;鶑秃习被岜砻婊钚詣┍砻鎻埩?、乳化起泡潤濕性能測定(二)
> 以大豆為原料合成的N-椰子油?;鶑秃习被岜砻婊钚詣┍砻鎻埩Α⑷榛鹋轁櫇裥阅軠y定(一)
> 表面張力和重力驅(qū)動下液態(tài)釬料填充焊縫流動模型構建及效果評估(三)
> 表面張力和重力驅(qū)動下液態(tài)釬料填充焊縫流動模型構建及效果評估(二)
> 表面張力和重力驅(qū)動下液態(tài)釬料填充焊縫流動模型構建及效果評估(一)
> 鹽水溶液中,磺酸型含氟表面活性劑復合體系表、界面張力和潤濕性研究(三)
> 鹽水溶液中,磺酸型含氟表面活性劑復合體系表、界面張力和潤濕性研究(二)
> 鹽水溶液中,磺酸型含氟表面活性劑復合體系表、界面張力和潤濕性研究(一)
> FYXF-3煤粉懸浮劑潤濕吸附性能、?傷害性能及在煤層氣壓裂改造現(xiàn)場的實施方案(三)
> FYXF-3煤粉懸浮劑潤濕吸附性能、?傷害性能及在煤層氣壓裂改造現(xiàn)場的實施方案(二)
基于水煤漿流變性和動態(tài)表面張力觀察水煤漿的微觀破裂特性(二)
來源: 華東理工大學學報(自然科學版) 瀏覽 72 次 發(fā)布時間:2025-07-14
水煤漿的流變特性采用Bohlin CVO型馬爾文旋轉(zhuǎn)流變儀測量。表面張力的測量方法主要有吊片法、液滴-鼓泡法以及微觀界面面積測量法等。本實驗基于液滴-鼓泡法使用SITA science line t100型全自動表面張力儀對煤漿的動態(tài)表面張力進行了測量,并與芬蘭Kibron公司生產(chǎn)的Delta-8全自動高通量表面張力儀的靜態(tài)表面張力進行比較。采用液滴-鼓泡法測量動態(tài)表面張力時,將特制毛細管伸入待測液體,空氣經(jīng)由毛細管進入液體,毛細管出口氣泡形成外凸,氣泡的半徑也隨之連續(xù)不斷減小。氣泡在液體中受到表面張力的擠壓,氣泡半徑越小,壓力就越大,然后通過測量壓力的變化獲得表面張力。測量動態(tài)表面張力時,通過控制空氣進入毛細管的流量來改變氣泡半徑變化速率,其涉及的特征氣泡時間也稱氣泡壽命,是指在鼓泡過程中從氣泡形成外凸到氣泡半徑達到最小值的時間間隔。水煤漿破裂實驗中,漿體通過噴嘴滴出,噴嘴內(nèi)徑為4.18 mm。使用Photron Fastcam SA2型高速相機拍攝水煤漿破裂過程,并使用開源軟件ImageJ分析處理得到的圖片。漿體微觀破裂實驗示意圖如圖2所示。
圖2漿體微觀破裂實驗示意圖
2結果與討論
2.1水煤漿的流變特性
黏度、屈服應力等水煤漿的流變特性對漿體破裂過程有重要影響。在水煤漿中,煤粉顆粒、分散劑和水形成了相對穩(wěn)定的三維空間結構,此時未被吸附、未參與形成緊密水化膜的自由水分布在這種三維結構的空隙中。這種空間結構在遭受剪切時很容易被破壞,從而導致分布在三維空間結構空隙中的自由水被釋放,黏度降低;同時,剪切應力越大,水煤漿的黏度越小,所以水煤漿一般為剪切變稀的假塑性流體。
水煤漿黏度隨剪切速率變化的實驗結果如圖3所示,不同條件下水煤漿的黏度隨剪切速率的增加均呈逐漸減小的趨勢,可知實驗水煤漿均為剪切變稀的非牛頓流體。具體而言,在剪切速率小于1 s?1的區(qū)間,水煤漿質(zhì)量分數(shù)對漿體黏度有顯著影響,質(zhì)量分數(shù)越大漿體黏度越大,且剪切變稀特性明顯;當剪切速率大于1 s?1時,水煤漿質(zhì)量分數(shù)對漿體黏度的影響相對減弱,且隨著剪切速率的增加,漿體黏度變化較小。所以采用Herschel-Bulkley模型建立了水煤漿流變關系式:
圖3水煤漿黏度隨剪切速率的變化
式中:是水煤漿黏度(Pa·s),為屈服應力(Pa),為剪切速率(s?1),K為稠度系數(shù)(Pa·sn),n為流變指數(shù)。擬合關系式相關系數(shù)為0.98,擬合參數(shù)見表2。
表2水煤漿的Herschel-Bulkley模型參數(shù)
2.2水煤漿的表面張力特性
表面張力是作用于液體表面,使液體表面積縮小的力,在液體破裂過程中發(fā)揮了重要影響。在液體破裂過程中,純液體的表面張力為常數(shù),而表面活性劑溶液的表面張力為變量,一般稱為動態(tài)表面張力,其數(shù)值與表面活性劑種類、濃度和界面變形速率等參數(shù)相關。對于水煤漿等含添加劑的復雜液固混合物漿體,其動態(tài)表面張力更加復雜。
不同質(zhì)量分數(shù)水煤漿表面張力的變化情況如圖4所示??梢钥闯觯翰煌瑮l件下水煤漿的動態(tài)表面張力變化情況比較一致,隨著特征氣泡時間(t)的增加,動態(tài)表面張力均先減小后增加,在氣泡特征時間為200 ms附近出現(xiàn)最小值;而水煤漿的動態(tài)表面張力與靜態(tài)表面張力存在顯著差異,在氣泡特征時間較小或較大時,動態(tài)表面張力均大于靜態(tài)表面張力。
圖4不同質(zhì)量分數(shù)水煤漿的表面張力變化情況(其中水平線為靜態(tài)表面張力)
從圖4中可以看出,隨著特征氣泡時間的增加,與表面活性劑溶液不同,水煤漿的動態(tài)表面張力呈現(xiàn)了非單調(diào)的變化特性。當氣泡變形速度較快即特征氣泡時間小于100 ms時,氣泡膨脹過程越快其受到煤粉顆粒的阻礙作用越大,所以水煤漿的動態(tài)表面張力隨著特征氣泡時間的增加而逐漸減小;當氣泡變形速度較慢時,水煤漿中的煤粉顆粒、分散劑和水將會形成相對穩(wěn)定的三維空間結構,氣泡膨脹時需要破壞水煤漿結構,所以動態(tài)表面張力隨著特征氣泡時間的增加而逐漸增大。水煤漿的動態(tài)表面張力與特征氣泡時間的關系式如式(2)所示,相關系數(shù)為0.83,由圖5可知水煤漿動態(tài)表面張力的實驗值(Dm,EXP)與擬合值(Dm,pre)吻合較好。
圖5水煤漿動態(tài)表面張力實驗值與擬合值對比