合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 低界面張力納米流體提高低滲透油藏壓裂滲吸速率和采收率(三)
> 利用LB膜分析儀技術(shù)制備納米環(huán)組裝陣列,得到一種具有結(jié)構(gòu)色的材料
> 東辛原油酸性活性組分油水界面張力、動態(tài)界面擴(kuò)張流變性質(zhì)研究(二)
> 滴體積法分析TODGA/HNO3體系萃取La3+過程中界面張力變化影響因素(一)
> 研究發(fā)現(xiàn):水解聚丙烯酰胺HPAM降低油水界面張力能力極其有限(二)
> 5種聚萜烯馬來酸酐聚乙二醇酯高分子表面活性劑表面張力、乳化性能等研究(二)
> LB膜技術(shù)在界面相互作用研究中的應(yīng)用
> 5μL樣品測表面張力?超微量天平如何破解納米材料研發(fā)困局
> 耐擦刮無膠消光膜制備方法、高表面張力與收解卷順暢性的平衡(一)
> 低張力氮?dú)馀菽w系的研制試驗(yàn)油井組概況
推薦新聞Info
-
> 振蕩頻率、濃度、油相、界面張力對陰離子表面活性劑HABS和PS界面模量的影響(三)
> 振蕩頻率、濃度、油相、界面張力對陰離子表面活性劑HABS和PS界面模量的影響(二)
> 振蕩頻率、濃度、油相、界面張力對陰離子表面活性劑HABS和PS界面模量的影響(一)
> 3種助劑對螺蟲乙酯和聯(lián)苯菊酯藥液表面張力、金釵石斛菲盾蚧防治效果的影響(三)
> 3種助劑對螺蟲乙酯和聯(lián)苯菊酯藥液表面張力、金釵石斛菲盾蚧防治效果的影響(二)
> 3種助劑對螺蟲乙酯和聯(lián)苯菊酯藥液表面張力、金釵石斛菲盾蚧防治效果的影響(一)
> 利用LB膜分析儀技術(shù)制備納米環(huán)組裝陣列,得到一種具有結(jié)構(gòu)色的材料
> 覆蓋有疏水網(wǎng)的開放管道液體輸運(yùn)穩(wěn)定性研究(下)
> 覆蓋有疏水網(wǎng)的開放管道液體輸運(yùn)穩(wěn)定性研究(上)
> 水、常溫液態(tài)金屬等9種流體對液滴碰撞壁面影響的數(shù)值研究(三)
微流控器件結(jié)構(gòu)對水/水微囊形成過程、界面張力的影響規(guī)律(四)
來源: 瀏覽 910 次 發(fā)布時間:2025-02-28
2.5水/水微囊的pH響應(yīng)和可控釋放
所制備的水/水微囊具有良好的生物相容性、尺寸均一性及較高的包裹率和裝載率,是各種活性物質(zhì)的理想載體,并且能夠?qū)H變化做出響應(yīng),實(shí)現(xiàn)可控釋放。如圖5(A)所示,水/水微囊的殼層是由二價鈣離子交聯(lián)的海藻酸鈉水凝膠組成,在酸性環(huán)境下具有良好的穩(wěn)定性,但在堿性環(huán)境下海藻酸鈉水凝膠與二價鈣離子的結(jié)合能力變?nèi)?,交?lián)網(wǎng)絡(luò)被破壞,從而釋放內(nèi)核活性物質(zhì)。如果在溶液中加入檸檬酸鈉,二價鈣離子更傾向于與檸檬酸根結(jié)合,從而破壞交聯(lián)網(wǎng)絡(luò),也可以溶解水/水微囊。如圖5(C)所示,水/水微囊的溶解速率隨pH的增大而提高。當(dāng)水/水微囊的囊壁被溶解后,內(nèi)核物質(zhì)逐漸被釋放出來,展現(xiàn)出良好的pH響應(yīng)性和可控釋放。
2.6平行放大微流控器件的水/水微囊的高通量制備
如圖6(A)和(B)所示,平行放大微流控器件采用梯形結(jié)構(gòu)設(shè)計,微流控器件由一個主干通道和多個分支通道組成,每個分支通道組成一個水/水微囊生成器。流體在微通道內(nèi)的流動類似電流在電路中的傳輸,微通道兩端的壓力差(ΔP)類似電壓,微通道的流動阻力(R)類似電阻,類比微通道中流體的流量(Q)類似電流,且具有類似歐姆定律關(guān)系式Q=ΔP/R.在平行放大微流控器件中,每個微通道壓力差ΔP一致,但由于離總?cè)肟诰嚯x不同,每個微通道的流動阻力不同,第N個分支通道阻力為Ru+NRc(其中,Ru是分支通道流動阻力,NRc是N段主干通道流動阻力Rc)。為了保證每個微囊生成器的流量一致,生成的微囊尺寸均一,需要保證主干通道的流體均勻分配至每個分支通道,即NRc?Rc,Q=ΔP/(Ru+NRc)≈ΔP/Ru.由于圓形微通道在層流狀態(tài)下的流動阻力為R∝μl/d4(其中,μ是流體的黏度;l是微通道的長度;d是微通道的直徑),由此可見,流動阻力主要受微通道直徑影響。計算分析表明,采用內(nèi)相主干通道直徑4 mm,分支通道直徑0.5 mm,保證NRc<0.01Ru,可實(shí)現(xiàn)各內(nèi)相分支通道流量相同。以此類推,采用外相主干通道直徑3.5 mm,分支通道直徑1.2 mm(由于外相分支通道采用同軸設(shè)計,分支通道橫截面積實(shí)際有效直徑為0.4 mm)。
在確定平行放大微流控器件通道結(jié)構(gòu)尺寸設(shè)計后,通過SolidWorks建立三維模型,并利用光固化3D打印機(jī)直接打印微流控器件。實(shí)驗(yàn)表明,10個并排微流控通道均可以穩(wěn)定生成水/水微囊,并且所生成的微囊具有較一致的尺寸大小和較均勻的分散性。綜合統(tǒng)計10個微流控通道形成的微囊分布,可以得到D=(2.75±0.10)mm.在10個平行微流控通道設(shè)計下,水/水微囊的產(chǎn)率可以達(dá)到0.5 kg/h,并可依據(jù)相同原理,進(jìn)一步增加平行通道的數(shù)量,提高產(chǎn)率,實(shí)現(xiàn)尺寸均一水/水微囊的高通量制備。
3結(jié)論
采用玻璃毛細(xì)管設(shè)計同軸微流控器件,結(jié)合數(shù)值模擬優(yōu)化和流動阻力分析,實(shí)現(xiàn)一步法高通量可控制備大小均勻、尺寸可控、壁厚可調(diào)、生物相容的水/水微囊。在實(shí)驗(yàn)研究與數(shù)值模擬相結(jié)合下,揭示了器件結(jié)構(gòu)、內(nèi)相/外相流速、界面張力、內(nèi)相/外相黏度等參數(shù)對水/水微囊直徑、壁厚的影響規(guī)律,并實(shí)現(xiàn)了水/水微囊的可控制備。該方法制備水/水微囊具有器件結(jié)構(gòu)簡單、操作便捷、一步法成型、高通量、微囊尺寸均一可控、核殼結(jié)構(gòu)穩(wěn)定及無需后處理等優(yōu)點(diǎn)。所制備的水/水微囊具有良好的生物相容性和尺寸均一性以及較高的包裹率和裝載率,是各種活性物質(zhì)的理想載體,并且能夠?qū)H變化做出響應(yīng),實(shí)現(xiàn)可控釋放。最后通過微通道流動阻力分析,設(shè)計多通道平行放大微流控器件,實(shí)現(xiàn)了尺寸均勻可控水/水微囊的高通量制備,為水/水微囊在藥物遞送、醫(yī)學(xué)治療等領(lǐng)域的應(yīng)用進(jìn)一步奠定了基礎(chǔ)。