合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國(guó)保潔 |
美國(guó)強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 超微量分析天平應(yīng)用領(lǐng)域及實(shí)例
> 表面張力儀的十個(gè)應(yīng)用
> 新設(shè)計(jì)的拼接式固相萃取柱完美解決萃取柱出現(xiàn)空氣栓塞問(wèn)題
> 基于界面張力弛豫法考察羥基取代烷基苯磺酸鹽的界面擴(kuò)張流變性質(zhì)(二)
> 什么是超微量天平?超微量天平用在什么地方
> 熱毛細(xì)效應(yīng)引起的表面張力梯度導(dǎo)致傾斜壁面上液膜干斑的出現(xiàn)(一)
> 誘導(dǎo)期測(cè)定法研究NaCl的添加對(duì)碳酸鋰固-液界面張力等成核動(dòng)力學(xué)參數(shù)影響——過(guò)飽和度的計(jì)算
> DEAE-瓊脂糖LB膜的制備方法、最佳成膜濃度及表面電勢(shì)測(cè)定
> 電子微量天平應(yīng)用實(shí)例:研究氮修飾木質(zhì)素基超交聯(lián)聚合物碘吸附機(jī)理
> 桐油基衍生物鈉鹽的表面張力、CMC值測(cè)定、乳液穩(wěn)定性、固化膜性能測(cè)試(二)
推薦新聞Info
-
> 牡蠣低分子肽LOPs雙重乳液制備、界面性質(zhì)檢測(cè)及消化吸收特性研究(三)
> 牡蠣低分子肽LOPs雙重乳液制備、界面性質(zhì)檢測(cè)及消化吸收特性研究(二)
> 牡蠣低分子肽LOPs雙重乳液制備、界面性質(zhì)檢測(cè)及消化吸收特性研究(一)
> 不同水解時(shí)間的Protamex酶對(duì)玉米谷蛋白表面張力、泡沫、理化性質(zhì)等的影響(三)
> 不同水解時(shí)間的Protamex酶對(duì)玉米谷蛋白表面張力、泡沫、理化性質(zhì)等的影響(二)
> 不同水解時(shí)間的Protamex酶對(duì)玉米谷蛋白表面張力、泡沫、理化性質(zhì)等的影響(一)
> 新型納米材料2-D納米黑卡在油水界面的微觀驅(qū)油機(jī)理、界面張力測(cè)定(三)
> 新型納米材料2-D納米黑卡在油水界面的微觀驅(qū)油機(jī)理、界面張力測(cè)定(二)
> 新型納米材料2-D納米黑卡在油水界面的微觀驅(qū)油機(jī)理、界面張力測(cè)定(一)
> 燒結(jié)礦致密化行為研究:不同堿度條件下熔體的表面張力、表觀黏度值(三)
新型助排劑配方組分、對(duì)表/界面性能的影響及助排效果(二)
來(lái)源:西安石油大學(xué)學(xué)報(bào)(自然科學(xué)版) 瀏覽 93 次 發(fā)布時(shí)間:2025-06-27
2結(jié)果與討論
2.1助排劑組成
本研究的目的是獲得具有低表/界面張力且與巖石達(dá)到近似于中性潤(rùn)濕的助排劑。首先,需要選擇表面活性劑。表面活性劑溶液達(dá)到臨界膠束濃度(cmc)后的表面張力(γcmc)是該表面活性劑溶液能夠獲得的最低表面張力。根據(jù)常見(jiàn)表面活性劑的γcmc數(shù)據(jù),氟表面活性劑能夠使水溶液達(dá)到更低的表面張力。因此,在新型助排劑中將選用合適的氟表面活性劑以降低溶液的表面張力。其次,選擇潤(rùn)濕性改變劑。要達(dá)到與巖石接近中性潤(rùn)濕,需要調(diào)節(jié)助排劑在巖石表面的吸附作用,以改變巖石表面的性質(zhì)使助排劑體系與巖石潤(rùn)濕接觸角在75°~105°間(90°±15°)。此外,由于氟表面活性劑和潤(rùn)濕性改變劑一般只能使油水界面張力降低到1 mN/m以上,因此要借鑒化學(xué)驅(qū)提高采收率中能夠與原油達(dá)到超低界面張力的表面活性劑的選擇方法,復(fù)配合適的碳?xì)浔砻婊钚詣┮垣@得能夠同時(shí)降低界面張力的助排劑體系。
圖1為3種氟表面活性劑的表面張力曲線。從圖1可以看出,隨著氟表面活性劑濃度的增加,溶液表面張力迅速下降,當(dāng)濃度達(dá)到臨界膠束濃度(cmc)后,隨著濃度的增加,表面張力趨于穩(wěn)定。3種氟表面活性劑FC-XF、FC-100和FC-H水溶液的cmc分別為0.001%、0.003%和0.005%,最低表面張力γcmc分別約為19、19.5和22.5 mN/m。因此,兩性氟表面活性劑FC-XF比2種非離子型氟表面活性劑具有更強(qiáng)的降低表面張力效率(低cmc)和能力(低γcmc),而且兩性型氟表面活性劑也不存在非離子型表面活性劑在更高溫度下氧乙烯基團(tuán)失去親水性而不溶于水的問(wèn)題。因此選擇FC-XF作為助排劑中的氟表面活性劑。
圖1氟表面活性劑溶液的表面張力
圖2為Ⅱ型潤(rùn)濕性改變劑質(zhì)量分?jǐn)?shù)與巖石的接觸角之間的關(guān)系。從圖2可以看出,隨著Ⅱ型潤(rùn)濕性改變劑質(zhì)量分?jǐn)?shù)的增加,接觸角由55°逐漸增大,當(dāng)加入0.2%Ⅱ型潤(rùn)濕性改變劑時(shí)接觸角可達(dá)到83°,繼續(xù)增加濃度接觸角略有減小,但都大于75°。
圖2Ⅱ型潤(rùn)濕性改變劑質(zhì)量分?jǐn)?shù)與巖石接觸角關(guān)系曲線
圖3為典型的碳?xì)浔砻婊钚詣?潤(rùn)濕性改變劑混合溶液與原油的動(dòng)態(tài)界面張力曲線。從圖3可以看出,0.1%C12CON+0.2%Ⅱ型潤(rùn)濕性改變劑、0.1%GL6/SDS(混合質(zhì)量比為4∶1)+0.2%Ⅱ型潤(rùn)濕性改變劑混合溶液與原油的界面張力分別為2.573 2 mN/m和0.063 5 mN/m,但0.1%APS+0.2%Ⅱ型潤(rùn)濕性改變劑混合溶液與原油的界面張力可以達(dá)到0.024 6 mN/m。而且,0.1%APS+0.1%Ⅱ混合溶液與原油的界面張力也低于0.05 mN/m,0.1%APS+0.5%Ⅱ型潤(rùn)濕性改變劑混合溶液與原油的界面張力甚至可以達(dá)到小于0.003 5 mN/m的超低界面張力。
圖3碳?xì)浔砻婊钚詣?潤(rùn)濕性改變劑混合溶液與原油的動(dòng)態(tài)界面張力曲線
綜合上述研究結(jié)果,選擇氟表面活性劑FC-XF、Ⅱ型潤(rùn)濕性改變劑和兩性表面活性劑APS復(fù)配制備高界面活性劑助排劑。
2.2助排劑配方確定
將不同質(zhì)量分?jǐn)?shù)的氟表面活性劑FC-XF、Ⅱ型潤(rùn)濕性改變劑和兩性表面活性劑APS復(fù)配可以獲得不同的助排劑體系。各組分的含量不同,所獲得的助排劑溶液的表/界面張力和對(duì)巖石潤(rùn)濕角不同。為了獲得最優(yōu)配方,實(shí)驗(yàn)考察了當(dāng)Ⅱ型潤(rùn)濕性改變劑質(zhì)量分?jǐn)?shù)為0.2%,分別改變FC-XF和APS的質(zhì)量分?jǐn)?shù)時(shí)對(duì)助排劑體系表/界面張力和接觸角的影響。這不僅可以分析助排劑組分對(duì)表/界面性能的影響,而且有利于助排劑的配方優(yōu)化。
圖4為Ⅱ型潤(rùn)濕性改變劑質(zhì)量分?jǐn)?shù)為0.2%,APS質(zhì)量分?jǐn)?shù)為0.1%時(shí)氟表面活性劑FC-XF濃度對(duì)體系表面張力、界面張力和接觸角的影響。
圖40.1%APS+0.2%Ⅱ型潤(rùn)濕性改變劑+FC-XF混合體系表面張力、界面張力和接觸角隨FC-XF質(zhì)量分?jǐn)?shù)的變化
從圖4(a)中可以看出,隨著FC-XF質(zhì)量分?jǐn)?shù)由0.005%增加到0.050%,體系的表面張力由25.6 mN/m降低至20.8 mN/m,界面張力則由0.028 6 mN/m升高到0.212 3 mN/m。這是因?yàn)橹艅┲懈鹘M分在表/界面上發(fā)生協(xié)同和競(jìng)爭(zhēng)吸附,F(xiàn)C-XF濃度增加使得表/界面中FC-XF的吸附量增加,因而降低表面張力的效率增加,同時(shí)使得降低界面張力組分的吸附量減小,因而界面張力升高。
從圖4(b)中可以看出,隨著FC-XF質(zhì)量分?jǐn)?shù)由0.005%增加到0.050%,混合體系與巖石的接觸角由87°降低至73°,γcosθ由1.3 mN/m上升到6.3 mN/m。這是由于吸附Ⅱ型潤(rùn)濕性改變劑和APS使得巖石表面由水濕轉(zhuǎn)變?yōu)橹行詽?rùn)濕(接觸角>87°),更易于吸附FC-XF的碳氟鏈而使親水性頭基在巖石表面暴露,增加了巖石表面的親水性,因而隨著FC-XF質(zhì)量分?jǐn)?shù)的增加接觸角減小。